

Super-Efficient Power Semiconductors

Jason Hsu 許元豪, Sr. Application Engineer

Content

Qspeed Semiconductor Introduction

- The Advantage of Qspeed Diode in CCM PFC
 - Q Series Diode
 - X Series Diode
- Why Can Qspeed Diode Compete Against SiC Diode
 - Qspeed Unique High Technology in Silicon Process
 - Fatal Defect in SiC Wafer

Future Product Roadmap

1. Qspeed Semiconductor Introduction

Qspeed Semiconductor – Locations/logistics

- Headquarters in Silicon Valley (Santa Clara)
- Fab in Japan, assembly in Manila
- Logistics in Taipei (Q3 2006)
- Sales office in Taipei

The Power Density Race Is Accelerating

- Power Density = Output Power ÷ Size
 - Example: 550 Watts ÷ 52 cubic inches = 11 Watts per Cubic Inch
- In 2003 the blade server power supply shown below offered 550 Watts of energy in 52 cubic inches for PD = 11 W/in³
- In 2005 the same space was used to deliver 700 W for 13 W/in³
- This year 2007 power supply companies must deliver 1000 W in same space -24 W/in³
- R&D groups around the world now working to achieve 40 W/in³

2. The Advantage of Qspeed Diode in CCM PFC

- Q Series Diode
- X Series Diode

SMPS Function Block

Power Semi's are the Key to Energy Efficiency

The largest cause of energy loss in a power supply is due to the power semiconductor components. Qspeed Semi will address these component needs, with the Q-Series PFC Rectifier being just the first...

The Flow of Power in an AC-DC Power Supply From Wall to Load Media

Why Should We Need PFC ? 1/2

- To increase system's capacity
- To maintain a better voltage regulation

Qspeed Semiconductor Confidential

Control Methods for Active Power Factor Correction

Discontinuous Current Mode DCM usually variable frequency

Charakteristics:

Advantage

no reverse recovery losses of diode simple control method

Disdvantage difficult smoothing of peak currents instable operation at light load

Continuous Current Mode CCM usually constant frequency

Charakteristics: Advantage easy smoothing of peak currents stable operation at light load

Disadvantage

complex control method

2007/11/19

DCM PFC Inductor Current

CCM PFC Inductor Current

Power Diode Switching Behavior

2007/11/19

Qspeed Semiconductor Confidential

Additional Switching Current Spike Caused by Diode Qrr

Power MOSFET Switching Behavior

2007/11/19

PFC Diode Reverse Recovery -> Efficiency

- The area under the zero line represents energy and charge stored in the diode (Qrr). Less is better.
- This "reverse recovery energy" flows through the FET during turn on causing low efficiency.
- Compared to traditional ultrafast diodes, Q-series Rectifiers:
 - Reduce the temp of the PFC FET by 5 to 10°C.
 - Improve efficiency up to 2%
 - Improve power density up to 10%.
 - Generate less noise

Q-Series has lowest EMI of all UF rectifiers:

Qspeed Semiconductor Confidential

...including SiC:

Qspeed Semiconductor Confidential

Qrr v.s. Tj for Various Technologies:

Q-Series Forward Losses Improve with Temperature

> So the losses versus temperature tend to balance...

Forward Voltage vs. Junction Temperature

Q-Series Diode Test Example – (1)

	温升对比(50度高温)		
. .	D7(PFC 升压二极管)	Q1(PFC MOS 管)	
APT15DQ60K	103.9	106.7	
CSD06060	81.2	86.6	
LQA08TC600	92.2	87.9	

输入 90VAC,输出 700W,老化 2 小时测试温度

频率对输入功耗的影响

	83K	135K	
APT15DQ60K	722.5	731.5	
CSD06060	716.2	717.8 720	
LQA08TC600	718		
输入 90VAC,开机瞬间测试, 损耗的影响。	输出 600W, 主要测试 D7(PF	C升压二极管)的改变对开关	

Q-Series Diode Test Example – (2)

	SCD10060A	LQA08TC600
D15	97.3	96.9
Q9	99.3	99.7
D19	118	112.8
D23	84.8	86
Q6	91.7	90.6
D17	95.3	94.2
U6	85.6	81.7
D22	84.8	83.8
D16	100.9	102.2
Q7	110.2	112
D18	100.9	99.4
D24	96	95.2
D25	85.7	84.5
D53	82.3	81.9
T2	113.8	107.4
Ambient	64.1	64.2
BD1	108.9	106.5
D1(PFC DIODE)	99.3	106.5
Q1(PFC MOSFET	105.4	100.8
Q2(PFC MOSFET	102.6	98.1
Q3	114	110.7
Q5	123.7	123.8
L2	87.2	85.8
LI	86.7	85.1
OUTPUT	462.4323W	463.039W
INPUT 95V	697.44W	700.294 W
EFF.	66.30%	66.10%

950 IN 65-10KHZ 700 U

- Customer test report comparing SiC diode from Cree with Qspeed:
 - Efficiency is within 0.2%
 - MOSFETs run 4.5°C cooler with Qspeed
 - Almost all other components run cooler with Qspeed
- This customer was paying \$4.00 for Cree SiC diodes. Qspeed would be <<\$2.00.

Q-Series Diode Test Example – (4)

1KW Power Supply @ the following conditions

- PS2 Mechanical Size
- 90VAC/50HZ Line Input
- 67 KHz Synchronized Frequency in PFC and PWM,
- <u>4 pcs SPW20N60C3</u> in PFC Stage (no snubber circuit)
- Tamb = 25 degreeC

	LQA08TC600	RHRP1560
Tcase, diode	73 °C	92 °C
Tcase, FET	71 ℃	93 °C

Reduce PFC MOSFET to <u>3 pcs</u> SPW20N60C3

Q-Series Diode Test Example – (5)

50" PDP Power Board

STTH12R06 + Lossless ZVS Sbubber

LQA08TC600 without Any Snubber

X-Series Rectifiers

- Designed to be a direct drop-in replacement for ST "Tandem" ultrafast rectifiers
- Similar VF characteristics, but better than ST at 25°C
- Similar Qrr values
- > Much softer recovery
 - Straightforward replacement
 - Fewer noise problems
 - Can eliminate snubbing
- Cost: Significantly Lower
- Sampling Q1, 2007

Direct Replacement with Qspeed Rectifiers

	Currently using:	Replace with:	Result:		
<u>1</u>	Silicon Carbide Rectifiers	Q-Series	Same efficiency, much lower cost (simple drop-in direct replacement)		
<u>2</u>	Tandem with snubbers	Q-Series*	+0.5% efficiency, lower cost (*no snubber required)		
<u>3</u>	Tandem w/o snubbers	X-Series	Same or higher efficiency, lower cost (simple drop-in direct replacement)		
4	Std ultrafast with snubbers	Try X-Series* or Q-Series*	+2% efficiency, lower cost (*no snubber required)		
	Std ultrafast w/o snubbers	Don't bother	The super-cheap market is unprofitable, and will decline soon		

Ospeed PFC Product Family

Products targeted to match the needs of the power level and topology:

Power level	75-150W	125-200W	200-400W	400-800W	600-1kW	800- 1.5kW
Operating mode	DCM	DCM	CCM or DCM	ССМ	ССМ	ССМ
600∨ Q-Series			3A T LQA03TC600	5A F LQA05TC600	8A P LQA08TC600	15A T LQA15AC600
600∨ X-Series	1A 2011 100	4A LXA04T600	6A	8A LXA08T600	15A	20A

4. Future Product Roadmap

The proof is in our customers

Customers who are already in mass production with Qspeed products:

Qspeed Semiconductor's Product Roadmap

The Flow of Power in an AC-DC Power Supply From Wall to Load

Qspeed Semiconductor's Impact on Power Efficiency

End of Presentation – Thank You! Contacts:

Jason Hsu, Sr. Application Engineer, Asia Email: jason@qspeed.com

> Taine Wu, Sales Director, Asia Email: <u>taine@qspeed.com</u>