Champron Microslectronic September 30th, 2007

$80++$ CM6802A

$80+$ CM6800/A
Low cost CM6805A/B

80+ to 85+

CM6802
 Hard Switching PFC Dual Switch Forward

Champron Microslectronic

Champion Microelectronic

Present possible R/D 85+ Solutions:

Reliability Issue and Bad Reputation

Champron Microelectronic
September 30th, 2007

830+Powarssumply Efficiemoy

At Full Load:

- Turn Ratio = 10 with D ~ 33\%
- Low Volt Schottky Diodes for both 5V and 3.3V
- Better Magnetic Materials (Sundest Core'
- Better MOSFETs

At Light Load: (CM6802 Key Featl res)

- Change PFC Boost from 380V to 304V

80++ Power Supply Efficiency

At Full Load:

- DC to DC 3.3V
- Turn Ratio = 10 with D ~ 33\%
- Low Volt Schottky Diodes for both 5V and 3.3V
- Better Magnetic Materials (Sundest Core)
- Better MOSFETs

At Light Load: (CM6802 Key Features)
Change PFC Boost from 380V to 304V

- DC to DC 3.3 V remove the 600 mW by the Mega Amp

Champron Microelectronic
September 30th, 2007

Archetypal CM6802 (zvs-Like PFC-Pww controller)
828582 B0wtw Supply Efficiency Power Supply Volume Production Ready

Now

At Full Load:

- DC to DC 3.3V: It improves 2.04\% at 50\% load and 1.32\% at 100\% load

At Light Load:

- CM6802: Improve 2\% light load
- DC to DC 3.3 V due to remove $\sim 600 \mathrm{~mW}$ from Mega Amp Current

Champron Microslectronic

80+ to

1. Efficiency Goes up ~ 1.5\% to 2%

US\$???
2. Electrical Stress on the Power Device Reduced
3. Hold-Up tim
4. EMI filter is

With Cincan?

US\$ 0.25
US\$ 0.35
There is no cost difference
To migrate from $80+$ to 828582
5. Monotonic Output is easy
6. No Load Consumption Drops ~ 0.3 W

Chamron Microslectronic

$80++$ CM6802A

September 30th, 2007

80+ to

With Civcen2
 There is no cost difference To migrate from $80+$ to 828582

Champion Microflectronic
$80++$ CM6802A

Efficiency is proportional to cost

Efficiency is limited by the cost!

Champron Microelectronic

We know that...

to 858585

Champion Microelectronic

to 858585

Efficiency is proportional to cost

Low cost CM6805A/B

Output Power > 600w

Efficiency		
	fsw $\times 1 \mathrm{C} \times$	$V \times$
100\%	Dominited	$\mathrm{b} y$
90%	Switc何ing	Loss

We know that...

We can focus on improving the full load efficiency!

Champion Microelectronic September 30th, 2007

to 858585

$80++$ CM6802A

$80+$ CM6800/A

Low cost CM6805A/B

750W: Efficiency ~ 86.71\% @ 374W
850W: Efficiency $\sim 85.58 \%$ @ 431W
1000W: Efficiency ~ 86.45\% @ 498w
750W: Efficiency ~85.34\% @ 378W
475W: Efficiency ~85.29\% @ 240W
1000W: Efficiency - 85.24\% @ 494W
850W: Efficiency ~ 85.25\% @ 428w
560W: Efficiency ~85.08\% @ 283W
1000W: Efficiency ~ 84.75\% @ 507w
600W: Efficiency $\sim 84.71 \%$ @ 302W

700W: Efficiency ~ 84.46\% @ 352W

These tests were conducted as a part of the 80 PLUS program. 80 PLUS is a computer buy-down program to promote high-efficiency power supplies (greater than 80% efficiency in the active mode) in desktop computers and desktop-derived servers.

Effi|colecoyrisynot limitredlloy thectoptab

Champron Microslectronic

September 30th, 2007

to 858585

Where to start the project? What is our priority?

Champion Microelectronic

We know that...
To reduce Switching Loss!

We know at 10\% load that $\mathrm{g} \sim 76 \%$
Power Loss at 10\% Load $=240 \mathrm{~W} \times 10 \% \times(1 / 76 \%-1)=7.579 \mathrm{~W}$
Let us assume the Power Loss is 100% switching loss?
Switching Loss ~ 7.579W
45.104W (conduction loss) vs. 7.579W (switching loss)
\therefore at full load, our priority is to reduce the conduction loss
Let us assume the Power Loss is 100% switching loss + conduction loss Conduction Loss ~ 52.683W - Switching Loss
\therefore Conduction Loss $\sim 52.683 \mathrm{~W}-7.579 \mathrm{~W}=45.104 \mathrm{~W}$

Champion Microelectronic

Priority: Drop Conduction Loss Pconduction $\sim 45.104 \mathrm{~W}=\| \times 1 \times R$

We can drop I
 Or
 We can drop R

Champion Microelectronic
September 30th, 2007

to 858585 With CM6802

At Full Load, 82\% to 85\% for a 240W Power Supply
 We need to reduce 11W from the
 (3.666 W ~ 1\%)

> Our Ultimate
> Target is to reduced 6W by reducing R.

-Increase the Heat Sink Area to reduce MOSFET temperature
-Add Schottky Diodes to parallel with the bottom MOSFET (only the bottom one) at SR to reduce Qrr For Pout = 240W:
-SR at $12 \mathrm{~V}, 112 \times \mathrm{Vf}=12 \mathrm{~A} \times 0.6 \mathrm{~V}=7.2 \mathrm{~W}--12 \mathrm{~A} \times 12 \mathrm{~A} \times 0.02=2.88 \mathrm{~W} . . . \Delta=4.32 \mathrm{~W} . . .1 .1782 \%$
.SR at $5 \mathrm{~V}, 15 \times \mathrm{Vf}=11 \mathrm{~A} \times 0.33 \mathrm{~V}=3.64 \mathrm{~W}--11 \mathrm{~A} \times 11 \mathrm{~A} \times 0.02=2.42 \mathrm{~W} . . . \Delta=1.22 \mathrm{~W} . . .0 .332 \%$
Total diode loss = 10.84W...... SR loss $=5.3 \mathrm{~W} . . \Delta=5.30 \mathrm{~W} . . .1 .44545 \%$

- Total $\Delta=5.30 \mathrm{~W}+4.187 \mathrm{~W}=9.487 \mathrm{~W}$
-2 Layer PCB with 4 ounces thickness ... 1\% 2 to 4 ounces
-Change PFC Boost Inductor Core from Sundest to Ferrite Pot Core... $\Delta=4.187 \mathrm{~W} . . .1 .142 \%$
-Switching Frequency Drops to 58 Khz from 67.5 Khz
-Reduce Rise Time and Fall Time for the 2 gate drives below $100 \mathrm{nS} . . . \Delta=3.6 \mathrm{~W}$ (However, PFC gate drive rise time needs to be slow) ... 1.03%

Champion Microelectronic September 30th, 2007

Our Ultimate Target is to reduced 6 W by reducing R.
to 858585 With CM6802

Mosfet Rdson and Vd vs. Temp

In Order for SR with MOSfet works properly! The temperature of MOSfet has to be cooled down.

to 858585

To Boost Efficiency at Light Load, 80\% to 85\% for a 20\% x 300W = 60W Power Supply

We need to reduce 4.41W from the switching loss
-Change PFC Boost Inductor Core from Sundest to Ferrite Pot Core... $\Delta=0.5$ W...0.7\%
-Drop from 380V to 304V... $\Delta=1.4 \mathrm{~W}$... 2\%
-Drop from 67.5Khz to $58 \mathrm{Khz} . . . \Delta=1.5 \mathrm{~W} \cdot \cdots 2.2 \%$
-Reduce Rise Time and Fall Time for the 2 gate drives $\Delta=0.3 \mathrm{~W} . . .0 .425 \%$
-Due to SR, Dual Switch Forward is at CCM, we can remove the dummy load...... $\Delta=0.3 \mathrm{~W} \cdots 0.425 \%$
-Total $\Delta=4 \mathrm{~W}$

Champion Microflectronic September 30th, 2007

Chamnion $日 \cap++$ Solution with Lownct Coct

Champion $80+$ Solution with Lowest Cost

Adding Top SR, $\begin{gathered}\text { improved } \text { from } 82 \% \text { to } 82.5 \% ~\end{gathered}$

Champron Microelectronic September 30th, 2007

Our Ultimate Target is to reduced 6 W by reducing R.

to 858585 With CM6802

Champion $85+$ Solution with Lowest Cost

Champion Microelectronic September 30th, 2007

Our Ultimate Target is to reduced 6 W by reducing R .

Champion 85+ Solution with Lowest Cost

Trailing Edge Modulation PWM
can be implemented into
Current Mode or Feedforward Voltage Mode
PWM: Dual Switch Forward Converter
PFCOUT

Champion Microflectronic September 30th, 2007

Our Ultimate Target is to reduced 6 W by reducing R .

to 858585

 With CM6802
$80++$ CM6802

Champion 85+ Solution with Lowest Cost

Top and Bottom Switch SR

Causes

Forward Converter always in the CCM, It means Vout $=$ Vin $\times n \times D$.
Since Vin \& n are ~ constant, D is ~ constant. Cross regulation is easy and 3.3 V can be using the same transformer. Output Filter Cross Couple Inductor can be smaller. Efficiency goes up because DCR goes down.

Champron Microelectronic

$80++$ CM6802A

For Conduction Loss, We can drop R
~200ns

Gate Drive Timing Diagram

to 858585

Summary

1. Using ZVS-Like PFC-PWM combo, CM6802 to boost light load \mathfrak{y}
2. $80+$ to $828582=$ CM6802 + 3.3V DC to DC (Same Cost as $80+$ and Ready) :

- Industry standard
- High Volume Manufacture Ready
- Similar Inventory

3. $\mathbf{8 0}+$ to $858585=$ CM6802 Solution Identified $=$ Hard Switching PFC + Dual Forward + SR for 12V and 5V
4. Cost Effective $858585=$ CM6808 = Hard Switching PFC + Dual Forward + SR for 12V and 5V + Smart Transformer*: Best Solution in the long Run (*Patent Pending)
5. Other improvements: such Ferrite Core for PFC, Increase Turn Ratio, Improve Totem Pole to reduce rise time, Reduce Frequency from 67.5Khz to $\sim 57 \mathrm{Khz}$...
